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The correlation of intersecting layers of X-ray intensity data. By J. S. RorLeETT and R. A. SPARKS,
Ozford University Computing Laboratory, Oxford, England

(Received 2 October 1959 and in revised form 16 November 1959)

The various observed intensity values for X-ray reflec-
tions on a single reciprocal-lattice layer, obtained by the
multiple-film Weissenberg or precession-camera tech-
nique, can usually be reduced to a common arbitrary
scale straightforwardly and with little error.

The next stage is the reduction of a set of intersecting
layers to a single arbitrary scale. Kraut (1958) and
Dickerson (1959) have both suggested a method of ap-
proximating the solution to the normal equations of the
least-squares analysis of this problem which can give
grossly incorrect results. We outline below a derivation
of the normal equations for a simple case, describe the
method of using them which we find unsatisfactory,
explain how more accurate answers may be obtained,
and, by tabulating the results for a practical example,
illustrate the size of the errors which can occur. Finally
we suggest a means of weighting the observations in more
general cases.

We consider first the case in which data are collected
by rotation (or precession) about two axes only, so that
any one reflection appears on at most two layers. In
general each layer about the one axis will intersect all
layers about the other and vice versa.

Where two layers on independent arbitrary scales
intersect, an estimate can be made of their relative scales.
Let

K; be the scale factor by which F? values from layer 4
must be multiplied to place them on the common
scale.

(F%;) be the value of F} derived from layer ¢ (h is
written throughout for hki).

Then for an % lying on both of layers a and b we have:

(Fia) Ko — (Fip) Kp =0 . (1)

Hence we can derive a set of observational equations
which will usually be more numerous than the K; (this
will usually still be true if all the observational equations
derived from a single reciprocal-lattice line of inter-
section are combined into one equation by forming
X (F%,) and X(F%,), summing over those h appearing on
both layers). The observational equations should be
prepared (Whittaker & Robinson (1944), p.244) by
multiplying them by the square roots of their weights
W} so that the uncertainties in the differences may all
be expected to be of the same size. It is then possible to
use the observational equations to calculate the normal
equations, which are:

%‘ WhFia)PKa— . .. _12 Wi(Fra) (Fip) Ky — ... =0
. ; .

—;}‘J Wi (Fia) (Fip)Ka— . . . +%‘ Wh(Fhp)* Ky —...=0.
(] . .

For the <th square term the summation Y includes

one term for each reflection occurring both on layer ¢
and on some other layer. For the 4j cross term the sum-

mation includes one term for each reflection appearing
on both layer ¢ and layer j.

There is in general no exact solution of the observa-
tional equations, except the trivial one with all K; equal
to zero. As a result it is impossible to satisfy all of these
homogeneous normal equations exactly except with
K;=0. Since one is able to obtain only the ratios of the
K; rather than their absolute values, there is a tempta-
tion to try to obtain an approximate solution by setting
one of the K; equal to unity and by deleting one normal
equation, solving the remainder for the other K;. The
unsatisfactory nature of this solution may be demon-
strated by repeating it with a different deleted equation.
The larger the errors in the observational equations the
more the answers will be found to differ.

It is possible to find a non-trivial set of K; subject to
the reasonable normalising condition X K?=1 which

1

will minimise the weighted sum of squares of discrepancies
for the observational equations.  This is equivalent to
solving the normal equations with the zero right-hand
sides replaced by the values of AK; where 1 is a constant.
If there are » scale factors then there are n values of 1
for which the equations can be solved and it is the smallest
of these which gives the minimum weighted sum of
squares of discrepancies. This value of A and the corre-
sponding set of K; are the smallest latent root and the
corresponding latent vector respectively of the matrix
of the normal equations and they can be determined by
any of the standard methods which are now available.
In this laboratory we have found Givens’ process fast,
convenient and accurate for this purpose on the Ferranti
Mercury computer; but, since the smallest root of a
scaling matrix of this type is usually very different from
any other root, inverse iteration would probably be quite
rapid and easier to program if a standard subroutine for
solving linear simultaneous equations is available. This
iteration involves solving the normal equations with the
zero right-hand sides replaced either by equal numbers
or by estimates of the K;. The solution is then normalised

Table 1. Scale factors for a system of fifteen mutually
intersecting layers by two different methods

Axis and Scale Scale Ratio
layer factors (i) factors (ii) (1): (i)
a0 1-0000 1-0000 1-000
al 1-5336 1-2196 1-258
a2 1-9258 1-5564 1-237
a3 1-0260 0-8202 1-251
a4 1-2478 0-9972 1-251
ab 1-3141 1-0466 1-256
ab 1.1827 0-9322 1-269
al 0-5546 0-4409 1-258
c0 0-3363 0-2704 1-244
cl 0-8277 0-6918 1-240
c2 0-7384 0-5913 1-249
c3 1-0311 0-8122 1-270
b0 0-9353 0-7341 1-274
bl 1-3500 1-0675 1-265
52 1-5120 1:2171 1-242
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and used in the next iteration in place of the original
right-hand sides. When successive normalised solutions
agree to a sufficient number of figures the answers can
be accepted.

The 15 scale factors listed below were obtained (i) by
finding the latent root and vector and (ii) by setting
Kgo=1-0 and solving for the other 14 values. It can be
seen that the primary effect of method (ii) is to exag-
gerate Kgy in relation to the others, but that variations
of several percent also occur between the remaining ratios.

When it is desired to extend the method to the case
in which more than two layers on independent arbitrary
scales intersect at the same h the observational equations
can be derived in the following way. Let F} be the
weighted average of the scaled F3 occurring on all the
layers. Then the observational equation for F3%; will be:

(F3)K;—F3=0,
where
Fi =X (WiK;Fip)| 2 Wy
i j
hence
(Fi) K — 3 Wi(Fi) Kj| X Waj=0. (2)
i i

The weight to be given to equations (2) is Wp;.* Where

* It has been pointed out by the referee that the use of
equations (2) is equivalent to the minimisation of
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m layers intersect at h, all m of the equation (2) must be
included to weight the observations correctly, although
one equation is dependent on the other m — 1. When only
two layers intersect at & a pair of equations (2) can be
reduced to the form of equation (1) with weight Wp=
WraWao/(Wha + Whp).

The latent vector solution given above is the multi-
dimensional analogue of the methods described by
Schomaker, Waser, Marsh & Bergman (1959) for the
similar problem of fitting least-squares lines and planes
to given sets of points.
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The

= Wi(K;F3,— F3)2,
ki
where the summation includes one term for each observation
of any reflection appearing on more than one layer. The
minimisation is, of course, subject to the restriction that
I Ki=1.
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Extension of the M function tables for a hindered rotator of Lipscomb and King. By Hexry CrEs-
siN and R. W. WrEITMORE, Edgar C. Bain Laboratory for Fundamental Research, United States Steel Corporation, Re-

search Center, Monroeville, Pennsylvania

(Recerved 18 August 1959)

King & Lipscomb (1950) have derived an expression for
the structure amplitude from a crystal containing rotating
groups for the particular case of the hindered rotator.
Under the assumptions made by these authors they have
derived a modifying function such that the scattering
amplitude is written

g

F =3 fi exp [27ih . k] M i(as, by)
T

where
fo )
M?(a, b) =Zoep'i1mJ,m(a)Ip (b) cos pny[Iy(b) ,
Pp=
where
n = the number of potential minima,
y = the rotation angle corresponding to a potential
minimurm,
a = 2znjh||v] sin p,
b = V,/2kT,
Vo = the height above the minimum of the barrier to
rotation,
v = the vector from the center of rotation to the in-

stantaneous position of the atom,
= the reciprocal lattice vector
y = the angle between h and the normal to the plane
of rotation of the atom.
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We have evaluated the M function for the following
values:

0 to 4 in intervals of 0-1,

0-5 to 6 in intervals of 0-5 and oo,
2,3, 4,6,

0, n/16, n/8, 37/16, n/4 whenn = 2, 4,
0, /12, /6 when n = 3, 6.

For the case n=3 the M function will have real and
imaginary parts and writing

M} (a, b)=x+1y .

The tabular values are listed as (22 +y2)} with the sign
of x.

The evaluation of the M function was accomplished
on the IBM type 650 digital computer. The computation
time required for one value of the M function was between
0-5 sec. and 10 sec. depending on the number of terms
required for convergence.

A few minor changes in the present computer program
would allow it to be used as a subroutine in another
program which requires the M function. This subroutine
is available for the IBM 650 only.
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The tables can be obtained from the American Documentary
Inst.; microfilm copies of the tables and copies of the program
for computing the M function on an IBM 650 can be obtained,
upon request, from the authors.



